Miscellaneous Database Topics

Midterm Section

Primary Key

Define a primary key to enforce uniqueness for values entered in specified columns that do not allow nulls. If you define a primary key for a table in your database, you can relate that table to other tables, thus reducing the need for redundant data. A table can have only one primary key

Foreign Key

A foreign key works in conjunction with primary to enforce referential integrity among specified tables. For example, you can place a foreign key on the title_id column in the publishers table to ensure that a value entered in that column matches an existing value in the title_id column of the titles table. A table can have more than one foreign key.

Table Relationships:

A relationship works by matching data in key columns - usually columns with the same name in both tables. In most cases, the relationship matches the primary key from one table, which provides a unique identifier for each row, with an entry in the foreign key in the other table. Three types

One to One

In a one-to-one relationship, a row in table A can have no more than one matching row in table B, and vice versa. A one-to-one relationship is created if both of the related columns are primary keys or have unique constraints.

This type of relationship is not common because most information related in this way would be all in one table

One to Many (most common)

A one-to-many relationship is the most common type of relationship. In this type of relationship, a row in table A can have many matching rows in table B, but a row in table B can have only one matching row in table A. For example, the publishers and titles tables have a one-to-many relationship: each publisher produces many titles, but each title comes from only one publisher

Many to Many

In a many-to-many relationship, a row in table A can have many matching rows in table B, and vice versa. You create such a relationship by defining a third table, called a junction table, whose primary key consists of the foreign keys from both table A and table B. For example students and classes table need a third reference table to make relationship work.

Referential Integrity

Referential integrity is a system of rules that ensure relationships between rows in related tables are valid and that you do not accidentally delete or change related data. Remember the following points

· You cannot enter a value in the foreign key column of the related table if that value does not exist in the primary key of the related table. However, you can enter a null in the foreign key column.

· You cannot delete a row from a primary key table if rows matching it exist in a related table.

· You cannot change a primary key value in the primary key table if that row has related rows

Transact SQL

SELECT STATEMENT

SELECT statement returns the data from tables. Does not make any change to the underlying data. It is the most commonly used SQL statement. This statement can use a sub-select (sub query). Here is the syntax

SELECT fields FROM tables WHERE condition ORDERBY fields

Examples from the Northwind database

· SELECT * FROM CUSTOMERS returns all the customer records

· SELECT * FROM CUSTOMERS WHERE COUNTRY='USA' return customers in USA

· SELECT * FROM CUSTOMERS ORDER BY COMPANYNAME sorts by Company Name in Ascending Order

· SELECT DISTINCT(COUNTRY) FROM CUSTOMERS will return all the unique values for Country field

· SELECT * FROM CUSTOMERS WHERE COUNTRY='USA' OR COUNTRY='UK' returns customers in USA or UK

· SELECT * FROM CUSTOMERS WHERE COUNTRY IN ('USA','UK') same as above

· SELECT * FROM CUSTOMERS WHERE CONTACTNAME LIKE 'JO%' returns Customers with name beginning with the pattern ‘JO___’ e.g. JOHN would be returned

· SELECT CUSTOMERID FROM ORDERS WHERE EMPLOYEEID=5 returns the Customer ID from the Orders table where EmployeeID is 5

· SELECT COUNT(*) FROM CUSTOMERS returns the number of records in Customer table. will return number

· SELECT MIN(UNITPRICE) FROM PRODUCTS; will return the lowest priced product (a number)

· SELECT MAX(UNITPRICE) FROM PRODUCTS; will return the highest priced product (a number)

· SELECT AVG(UNITPRICE) FROM PRODUCTS; will return the average Unit Price (a number)

· SELECT SUM(Quantity) FROM [ORDER DETAILS] WHERE ORDERID=10258 will sum all the items for this order

· SELECT ProductID, SUM(Quantity) FROM [ORDER DETAILS] GROUP BY ProductID HAVING SUM(Quantity) >1000 will return two things: one the product id and second the sum of quantity grouped by Product ID where number of products ordered is greater than 1000

Stored Procedures:

A stored procedure is a group of Transact-SQL statements compiled into a single execution plan.

Microsoft(r) SQL Server(tm) stored procedures return data in four ways:

· Output parameters, which can return either data (such as an integer or character value) or a cursor variable (cursors are result sets that can be retrieved one row at a time).

· Return codes, which are always an integer value.

· A result set for each SELECT statement contained in the stored procedure or any other stored procedures called by the stored procedure.

· A global cursor that can be referenced outside the stored procedure.

Triggers:

 Triggers are special class of stored procedure defined to execute automatically when an UPDATE, INSERT, or DELETE statement is issued against a table. Triggers are a powerful tool that allow each site to enforce their business rules automatically when data is modified. Triggers can extend the integrity checking logic of Microsoft(r) SQL Server(tm) constraints, defaults, and rules, although constraints and defaults should be used instead whenever they provide all the needed functionality. Triggers are created at the table level.

Final Section
Inner Join

Left Outer Join

Right Outer Join

Note: Nulls are returned only in Outer Joins, never in Inner Join

INSERT STATEMENT:

The INSERT statement adds one or more new rows to a table. In a simplified treatment, INSERT has this form:

INSERT [INTO] table_or_view [(column_list)] data_values
Typically used to insert single row of data. However it can use a sub-select (sub query) to insert multiple records.

Try this

INSERT INTO REGION VALUES ('5','MIDWEST'')

UPDATE STATEMENT:

Used to update data in tables. Here is the syntax

UPDATE TABLE SET COLUMN WHERE CONDITION

This statement can use a sub-select (sub query). If you use the update statement without the where clause, you will update all the rows with the same value Ooops! Be careful. Try this on pubs database.

SELECT * FROM authors

WHERE city='Bay City'

How many records did you get? Now try this

UPDATE authors

SET state = 'PC', city = 'Bay City'

WHERE state = 'CA' AND city = 'Oakland'

DELETE STATEMENT:

In five words Removes rows from a table! Be very careful with this statement. Here is the syntax

DELETE FROM TABLE WHERE CONDITION

Notice that absence of where clause deletes all rows. Delete statement can use a sub-select (sub query). Also note delete * from table will not work. Try the following using pubs database

BEGIN TRANSACTION

DELETE FROM authors WHERE au_lname = 'McBadden'

What does it say? Do a Select * from authors and note that ‘MBadden’is gone. If you want to undo this action try this

ROLLBACK

VIEWS:
Creates a virtual table that represents the data in one or more tables in an alternative way. Views can be used as security mechanisms by granting permission on a view but not on the underlying (base) tables.

To create a view, you must be granted permission to do so by the database owner and you must have appropriate permissions on any tables or views referenced in the view definition. Try this in Query Analyzer

CREATE VIEW titles_view

AS

SELECT title, type, price, pubdate

FROM titles

The above statement creates a view called titles_view. Go ahead and expand the pubs database and notice the view under Views folder. Now try the following statement in Query Analyzer.

SELECT * FROM titles_view

JOINS:

Joins are an integral component of relational database design and usage.

Joins let you match data from multiple tables; based on significant key information A typical join condition specifies a foreign key from one table and its associated key in the other table. Types of Joins are INNER and OUTER

INNER JOIN

A join that displays only the rows that have a match in both joined tables.

For example, you can join the titles and publishers tables to create a result set that shows the publisher name for each title. Note Columns containing NULL do not match any values when you are creating an inner join and are therefore excluded from the result set. Null values do not match other null values.

Syntax for INNER JOINS

Old Syntax is SQL-87:

SELECT TITLES.title, PUBLISHERS.pub_name

FROM PUBLISHERS, TITLES

WHERE TITLES.pub_id=PUBLISHERS.pub_id

New Syntax (ANSI SQL or SQL-92):

SELECT TITLES.title, PUBLISHERS.pub_name

FROM TITLES INNER JOIN PUBLISHERS

ON TITLES.pub_id = PUBLISHERS.pub_id

OUTER JOINS

A join that includes records even if they do not have related records in the two tables. Outer joins are typically used to find corrupt data or unmatched data. After the results, you can run a delete query to remove the problem records.

You can create three variations of an outer join to specify the unmatched rows to be included:

1. LEFT OUTER JOIN

2. RIGHT OUTER JOIN

3. FULL OUTER JOIN

LEFT OUTER JOIN

All rows from the first-named table (the "left" table, which appears leftmost in the JOIN clause) are included. Unmatched rows in the right table do not appear.

Add couple of new records in Titles table. Easiest way to do this is to copy an existing record and then paste it in the next line. Remember you then have to change the value in title_id. The following SQL statement illustrates a left outer join between the titles and publishers tables to include all titles, even those you do not have publisher information for

SELECT titles.title_id, titles.title, publishers.pub_name

FROM titles LEFT OUTER JOIN publishers

ON titles.pub_id = publishers.pub_id

What values did you get for the matching records?

RIGHT OUTER JOIN

All rows in the second-named table (the "right" table, which appears rightmost in the JOIN clause) are included. Unmatched rows in the left table are not included. Suppose we wanted to find out what Regions in Northwind database do not have any customers.

Create a new field in REGION table called State that is of type Char (2)

Enter the following information

Eastern SP

Western RJ

Run the following

SELECT *

FROM CUSTOMERS RIGHT OUTER JOIN REGION

ON CUSTOMERS.Region=REGION.State

This will return all the records from the Region table even if they do not have a match in the Customers table. Notice the NULLS under the Customer fields. This shows that there are no customers for these regions

OR THE FOLLOWING

SELECT publishers.*, employee.*

FROM publishers RIGHT OUTER JOIN employee ON publishers.pub_id = employee.pub_id;

FULL OUTER JOIN

All rows in all joined tables are included, whether they are matched or not.

For example, a full outer join between titles and publishers shows all titles and all publishers, even those that have no match in the other table.

SELECT T.title_id, T.title, P.pub_name

FROM titles T FULL OUTER JOIN publishers P

ON T.pub_id = P.pub_id

Note: T and P are aliases that can be used to simplify the SQL Statement. Also notice the placement of aliases after the table names.

